Proper ventilation is crucial when it comes to ensuring the safety of any environment. Whether it be a home, office, industrial facility, or any other space, proper ventilation is essential for maintaining air quality and preventing health hazards.
Ventilation helps to remove stale air, odors, and pollutants from indoor spaces while allowing fresh air to circulate. This not only improves the overall comfort of the occupants but also reduces the risk of respiratory problems and other health issues caused by poor air quality.
In addition to improving air quality, proper ventilation can also help regulate temperature and humidity levels, which is important for maintaining a comfortable and healthy environment. Proper ventilation can also prevent the buildup of harmful gases such as carbon monoxide, which can be deadly in high concentrations.
There are various ways to ensure proper ventilation in a space, including using exhaust fans, opening windows and doors, using air purifiers, and maintaining HVAC systems. It is important to regularly inspect and maintain ventilation systems to ensure they are functioning properly and effectively removing pollutants from the air.
Overall, proper ventilation is a simple yet crucial safety precaution that should not be overlooked. By ensuring good airflow and air quality in indoor spaces, we can create a safer and healthier environment for everyone.
Grounding and electrical safety are crucial aspects of ensuring a safe environment in any setting. Whether it be at home, in the workplace, or any other location where electricity is present, taking proper precautions is essential to prevent accidents and injuries.
Grounding is the process of providing a path for electrical current to flow safely into the ground in case of a fault. This helps prevent electric shocks and fires by diverting excess electricity away from people and equipment. It is important to ensure that all electrical systems are properly grounded to reduce the risk of accidents.
In addition to grounding, there are several other safety precautions that should be taken when working with electricity. These include using insulated tools, wearing appropriate protective gear, avoiding overloading circuits, and following proper procedures for handling electrical equipment.
Regular maintenance and inspection of electrical systems are also crucial for identifying potential hazards and addressing them before they cause harm. By staying vigilant and being proactive about electrical safety, we can help prevent accidents and create a safer environment for everyone.
Overall, grounding and electrical safety play a vital role in maintaining a secure environment when working with electricity. By following proper procedures, taking necessary precautions, and staying informed about potential risks, we can help prevent accidents and ensure the well-being of ourselves and those around us. Stay safe, stay grounded!
Leak prevention measures are crucial for maintaining a safe environment in any setting. Whether it's a workplace, home, or public space, leakages can pose serious risks to health and safety. By implementing effective measures to prevent leaks, we can minimize the potential dangers associated with them.
There are various strategies that can be employed to prevent leaks from occurring. Regular maintenance of equipment and systems is essential to identify and address any potential issues before they escalate into major leaks. This includes checking for worn-out seals, loose fittings, and other signs of wear and tear that could lead to leaks.
Proper storage and handling of hazardous materials is also important in leak prevention. Storing chemicals in designated areas with proper containment measures can help reduce the likelihood of spills or leaks. Additionally, ensuring that employees are trained on how to handle these materials safely can further mitigate the risk of leaks.
Regular inspections and monitoring of systems can help detect any potential leaks early on. Installing leak detection devices such as sensors or alarms can provide an added layer of protection by alerting us to any leaks as soon as they occur. Having a response plan in place for dealing with leaks is also essential to minimize the impact on people and the environment.
Overall, leak prevention measures play a vital role in maintaining a safe and healthy environment. By being proactive in identifying potential risks and taking steps to prevent leaks from happening, we can create a safer space for everyone. Remember, safety always comes first!
Regular maintenance and inspections are crucial aspects of ensuring safety precautions are met in any environment. By consistently monitoring and maintaining equipment, machinery, and facilities, potential hazards can be identified and addressed before they pose a threat to individuals.
Maintenance involves keeping all equipment in good working condition by performing routine checks, cleaning, lubricating, repairing any damaged parts, and replacing worn-out components. This not only ensures that the equipment operates efficiently but also reduces the risk of accidents caused by malfunctions or breakdowns.
Inspections play a key role in identifying any potential safety hazards that may exist within a workplace. By conducting regular inspections, safety professionals can pinpoint risks such as faulty wiring, slippery floors, blocked emergency exits, or malfunctioning safety devices. Once these hazards are identified, appropriate measures can be taken to eliminate them and prevent accidents from occurring.
Regular maintenance and inspections should be viewed as proactive measures to protect the well-being of employees and visitors in any setting. By staying vigilant and addressing potential safety concerns promptly, organizations can create a safe environment for everyone involved. Remember, safety is everyone's responsibility!
has its own inline trap.
A drain-waste-vent system (or DWV) is the combination of pipes and plumbing fittings that captures sewage and greywater within a structure and routes it toward a water treatment system. It includes venting to the exterior environment to prevent a vacuum from forming and impeding fixtures such as sinks, showers, and toilets from draining freely, and employs water-filled traps to block dangerous sewer gasses from entering a plumbed structure.
DWV systems capture both sewage and greywater within a structure and safely route it out via the low point of its "soil stack" to a waste treatment system, either via a municipal sanitary sewer system, or to a septic tank and leach field. (Cesspits are generally prohibited in developed areas.) For such drainage systems to work properly it is crucial that neutral air pressure be maintained within all pipes, allowing free gravity flow of water and sewage through drains. It is critical that a sufficient fall gradient (downward slope) be maintained throughout the drain pipes to keep liquids and entrained solids flowing freely from a building towards the main drain. In situations where a downward slope out of a building en route to a treatment system cannot be created, a special collection sump pit and grinding lift "sewage ejector" pump are needed. By contrast, potable water supply systems are pressurized up to 50 pounds per square inch (340 kPa) or more and so do not require a continuous downward slope in their piping to distribute water through buildings.
Every fixture is required to have an internal or external trap to prevent sewer gases from entering a structure. Double trapping is prohibited by plumbing codes due to its susceptibility to clogging. In the U.S., every plumbing fixture must also be coupled to the system's vent piping.[1] Without a vent, negative pressure can slow the flow of water leaving the system, resulting in clogs, or cause siphonage to empty a trap. The high point of the vent system (the top of its "soil stack") must be open to the exterior at atmospheric pressure. On large systems, separate parallel vent stacks may also be run to ensure sufficient airflow, because the number of devices linked to an atmospheric vent, and their distances from it, are regulated by plumbing code.
A sewer pipe is normally at neutral air pressure compared to the surrounding atmosphere. When a column of waste water flows through a pipe, it compresses air ahead of it in the system, creating a positive pressure that must be released so it does not push back on the waste stream and downstream traps, slow drainage, and induce potential clogs. As the column of water passes, air must also freely flow in behind the waste stream, or negative pressure results, which can siphon water out of a trap after it is passed and allow noxious sewer gases to enter a building. The extent of these pressure fluctuations is determined by the fluid volume of the waste discharge.
Generally, a toilet outlet has the shortest trap seal, making it most vulnerable to being emptied by induced siphonage.
An additional risk of pressurizing a system ahead of a waste stream is the potential for it to overwhelm a downstream trap and force tainted water into its fixture. Serious hygiene and health consequences can result. Tall buildings of three or more stories are particularly susceptible to this problem. Adequate supplementary vent stacks are installed in parallel to waste stacks to allow proper venting in large and tall buildings and eliminate these pressure-related venting problems.
DWV systems are vented directly through the building roof. Increasingly DWV pipe is ABS or PVC DWV-rated plastic pipe equipped with a flashing at the roof penetration to prevent rainwater from entering the buildings. Older structures may use asbestos, copper, iron, lead or clay pipes, in rough order of era of use.
Under many older building codes, a vent stack (a pipe leading to the main roof vent) is required to be within approx. a 5-foot (1.5 m) radius of the draining fixture it serves (sink, toilet, shower stall, etc.).[2] To allow a single roof penetration as permitted by local building code, sub-vents may be tied together inside the building and exit via a common vent stack, frequently the "main" vent. Adding a vent connection within a long horizontal run with little slope will aid flow, and when used with a cleanout allows for better serviceability.
Unlike traps for other fixtures, toilet traps are usually designed to self-siphon to ensure complete evacuation of their contents;[citation needed] toilet bowls are then automatically refilled by a special valve mechanism.
In exceptional cases it is either not possible or inconvenient to vent a fixture or fixtures externally. In such cases a resort to "internal venting" may be viable, where compliant with local plumbing codes. Such alternatives include mechanical vents (also called cheater vents[3]) such as air admittance valves and check vents, and "plumb-arounds" such as an inline vent employed in kitchen islands and similar applications:
All DWV systems require various sized fittings and pipes which are measured by their internal diameter of both the pipes and the fittings which, and in most cases are Schedule 40 PVC wye's, tee's, elbows ranging from 90 degrees to 22.5 degrees for both inside diameter fitment (street) as well as outer diameter fitment (hub), repair and slip couplings, reducer couplings, and pipe which is typically ten feet in length. Sizes for hub fittings such as wye's and tee's are based on the inside diameter of the pipe that goes into their hubs. Items such as washer boxes and Studor vents are also measured by the internal diameter of the fittings.
Cost of materials, ease of installation, and resistance to corrosion all have come to favor Schedule 40 PVC DWV systems, which are replacing cast iron "hub" and "no-hub" DWV systems in many municipalities, while parts and skills associated with installing and maintaining cast iron systems are becoming increasingly scarce and costly.
The advent of PVC and solvent welding adhesives, which secure fittings against leakage and separation by melting the material into itself, has profoundly simplified and made installing a DWV system less expensive. As with pressurized water "supply" plumbing, all lines must be bored for where they will not compromise structural framing and properly supported inline, and all external penetrations properly sealed and flashed.
Mechanical vents are not allowed in Minnesota. These are often referred to as cheater vents, and they come in two varieties - an air admittance valve and a check vent.
A plumber is a tradesperson who specializes in installing and maintaining systems used for potable (drinking) water, hot-water production, sewage and drainage in plumbing systems.[1][2]
The origin of the word "plumber" dates from the Roman Empire.[3][4] Roman roofs used lead in conduits and drain pipes[5] and some were also covered with lead; lead was also used for piping and for making baths.[6] The Latin for lead is plumbum. In medieval times, anyone who worked with lead was referred to as a plumber; this can be seen from an extract about workmen fixing a roof in Westminster Palace; they were referred to as plumbers: "To Gilbert de Westminster, plumber, working about the roof of the pantry of the little hall, covering it with lead, and about various defects in the roof of the little hall".[7]
Years of training and/or experience are needed to become a skilled plumber; some jurisdictions also require that plumbers be licensed.
Common plumbing tasks and skills include:
Plumbing work is defined in the Australian Standards (AS3500) Regulations 2013 and refers to any operation, work or process in connection with installation, removal, demolition, replacement, alteration, maintenance or repair to the system of pipes and fixtures that conveys clean water into and liquid waste out of a building.
To become a licensed plumber a four year apprenticeship and a Certificate III in Plumbing is required. As part of this course, instruction in the basics of gas fitting will be undertaken. Upon completion, these basics in gas fitting will allow the plumber to not only apply for their plumbing license but also an interim gas license, and carry out gas work under the supervision of a fully qualified gas fitter.
To obtain a full gas license from the Department of Mines and Energy, the plumber will need to have worked on an interim gas license for a minimum period of twelve months and successfully completed a Certificate IV in Plumbing.
In Canada, licensing requirements differ by province; however, the provinces have pooled resources to develop an Interprovincial Program Guide that developed and now maintains apprenticeship training standards across all provinces. The Red Seal Program, formally known as the Interprovincial Standards Red Seal Program, is a program that sets common standards to assess the skills of tradespeople across Canada.[8] The Red Seal, when affixed to a provincial or territorial trade certificate, indicates that a tradesperson has demonstrated the knowledge required for the national standard in that trade.
Plumbing is not regulated in Colombia, so anyone can provide this service. Plumbers usually learn the trade because their families work in the construction industry, and they specialize in this field, but anyone can legally offer plumbing services. The most popular training institution for trades is SENA, a public school that provides high-quality education, though it is not mandatory.
In Ireland, a four-year apprenticeship plus qualification exam was necessary for someone to practice professionally. Accreditation of businesses is of great help in order to show their credibility and experience in the job.
National Vocational Qualifications (NVQ) remained the main form of plumbing qualification until they were superseded in 2008 by the Qualification and Credit Framework (QCF)[9] and then again, in 2015, into the National qualifications frameworks in the United Kingdom. The terms NVQ and SVQ (Scottish Vocational Qualification) are still widely used.[10]
Plumbers in the United Kingdom are required to pass Level 2 and Level 3 vocational requirements of the City and Guilds of London Institute. There are several regulatory bodies in the United Kingdom providing accredited plumbing qualifications, including City and Guilds of London Institute and Pearson PLC.[11]
Each state and locality may have its own licensing and taxing schemes for plumbers. Some states license journeymen and master plumbers separately, while others license only master plumbers. To become licensed, plumbers must meet standards for training and experience, and in most cases, pass a certification exam.[12] There is no federal law establishing licenses for plumbers.[13]
There are many types of dangers to a plumber. These include electric shock, strains and sprains, cuts and lacerations, bruises and contusions, fractures, burns and scalds, foreign bodies in the eye, and hernias.[14] Working at height or in confined spaces, or working with lead and asbestos are all on-site dangers that plumbers can face.[15]
Plumbers risk infections[16] when dealing with human waste while repairing sewage systems. Microbes can be excreted in the faecal matter or vomit of the sufferer onto the toilet or sewage pipes. Human waste can contain infectious diseases such as cholera, typhoid, hepatitis, polio, cryptosporidiosis, ascariasis, and schistosomiasis.
The term "White House Plumbers" was a popular name given to the covert White House Special Investigations Unit established on July 24, 1971, during the presidency of Richard Nixon. Their job was to plug intelligence "leaks" in the U.S. Government relating to the Vietnam War (i.e. the Pentagon Papers); hence the term "plumbers".[17]
In the early evening of June 17, 1971, Henry Kissinger held forth in the Oval Office, telling his President, and John Ehrlichman and Bob Haldeman, all about Daniel Ellsberg. Kissinger's comments were recorded, of course, on the hidden White House taping system, and four years later, a portion of that tape was listened to by the Watergate Special Prosecution Force, which was then investigating the internal White House police unit known as the Plumbers.
Plumbing is any system that conveys fluids for a wide range of applications. Plumbing uses pipes, valves, plumbing fixtures, tanks, and other apparatuses to convey fluids.[1] Heating and cooling (HVAC), waste removal, and potable water delivery are among the most common uses for plumbing, but it is not limited to these applications.[2] The word derives from the Latin for lead, plumbum, as the first effective pipes used in the Roman era were lead pipes.[3]
In the developed world, plumbing infrastructure is critical to public health and sanitation.[4][5]
Boilermakers and pipefitters are not plumbers although they work with piping as part of their trade and their work can include some plumbing.
Plumbing originated during ancient civilizations, as they developed public baths and needed to provide potable water and wastewater removal for larger numbers of people.[6]
The Mesopotamians introduced the world to clay sewer pipes around 4000 BCE, with the earliest examples found in the Temple of Bel at Nippur and at Eshnunna,[7] used to remove wastewater from sites, and capture rainwater, in wells. The city of Uruk contains the oldest known examples of brick constructed Latrines, constructed atop interconnecting fired clay sewer pipes, c. 3200 BCE.[8][9] Clay pipes were later used in the Hittite city of Hattusa.[10] They had easily detachable and replaceable segments, and allowed for cleaning.
Standardized earthen plumbing pipes with broad flanges making use of asphalt for preventing leakages appeared in the urban settlements of the Indus Valley civilization by 2700 BC.[11]
Copper piping appeared in Egypt by 2400 BCE, with the Pyramid of Sahure and adjoining temple complex at Abusir, found to be connected by a copper waste pipe.[12]
The word "plumber" dates from the Roman Empire.[13] The Latin for lead is plumbum. Roman roofs used lead in conduits and drain pipes[14] and some were also covered with lead. Lead was also used for piping and for making baths.[15]
Plumbing reached its early apex in ancient Rome, which saw the introduction of expansive systems of aqueducts, tile wastewater removal, and widespread use of lead pipes. The Romans used lead pipe inscriptions to prevent water theft. With the Fall of Rome both water supply and sanitation stagnated—or regressed—for well over 1,000 years. Improvement was very slow, with little effective progress made until the growth of modern densely populated cities in the 1800s. During this period, public health authorities began pressing for better waste disposal systems to be installed, to prevent or control epidemics of disease. Earlier, the waste disposal system had consisted of collecting waste and dumping it on the ground or into a river. Eventually the development of separate, underground water and sewage systems eliminated open sewage ditches and cesspools.
In post-classical Kilwa the wealthy enjoyed indoor plumbing in their stone homes.[16][17]
Most large cities today pipe solid wastes to sewage treatment plants in order to separate and partially purify the water, before emptying into streams or other bodies of water. For potable water use, galvanized iron piping was commonplace in the United States from the late 1800s until around 1960. After that period, copper piping took over, first soft copper with flared fittings, then with rigid copper tubing using soldered fittings.
The use of lead for potable water declined sharply after World War II because of increased awareness of the dangers of lead poisoning. At this time, copper piping was introduced as a better and safer alternative to lead pipes.[18]
The major categories of plumbing systems or subsystems are:[19]
A water pipe is a pipe or tube, frequently made of plastic or metal,[a] that carries pressurized and treated fresh water to a building (as part of a municipal water system), as well as inside the building.
Lead was the favoured material for water pipes for many centuries because its malleability made it practical to work into the desired shape. Such use was so common that the word "plumbing" derives from plumbum, the Latin word for lead. This was a source of lead-related health problems in the years before the health hazards of ingesting lead were fully understood; among these were stillbirths and high rates of infant mortality. Lead water pipes were still widely used in the early 20th century and remain in many households. Lead-tin alloy solder was commonly used to join copper pipes, but modern practice uses tin-antimony alloy solder instead in order to eliminate lead hazards.[20]
Despite the Romans' common use of lead pipes, their aqueducts rarely poisoned people. Unlike other parts of the world where lead pipes cause poisoning, the Roman water had so much calcium in it that a layer of plaque prevented the water contacting the lead itself. What often causes confusion is the large amount of evidence of widespread lead poisoning, particularly amongst those who would have had easy access to piped water,[21] an unfortunate result of lead being used in cookware and as an additive to processed food and drink (for example as a preservative in wine).[22] Roman lead pipe inscriptions provided information on the owner to prevent water theft.
Wooden pipes were used in London and elsewhere during the 16th and 17th centuries. The pipes were hollowed-out logs which were tapered at the end with a small hole in which the water would pass through.[23] The multiple pipes were then sealed together with hot animal fat. Wooden pipes were used in Philadelphia,[24] Boston, and Montreal in the 1800s. Built-up wooden tubes were widely used in the US during the 20th century. These pipes (used in place of corrugated iron or reinforced concrete pipes) were made of sections cut from short lengths of wood. Locking of adjacent rings with hardwood dowel pins produced a flexible structure. About 100,000 feet of these wooden pipes were installed during WW2 in drainage culverts, storm sewers and conduits, under highways and at army camps, naval stations, airfields and ordnance plants.
Cast iron and ductile iron pipe was long a lower-cost alternative to copper before the advent of durable plastic materials but special non-conductive fittings must be used where transitions are to be made to other metallic pipes (except for terminal fittings) in order to avoid corrosion owing to electrochemical reactions between dissimilar metals (see galvanic cell).[25]
Bronze fittings and short pipe segments are commonly used in combination with various materials.[26]
The difference between pipes and tubes is a matter of sizing. For instance, PVC pipe for plumbing applications and galvanized steel pipe are measured in iron pipe size (IPS). Copper tube, CPVC, PeX and other tubing is measured nominally, basically an average diameter. These sizing schemes allow for universal adaptation of transitional fittings. For instance, 1/2" PeX tubing is the same size as 1/2" copper tubing. 1/2" PVC on the other hand is not the same size as 1/2" tubing, and therefore requires either a threaded male or female adapter to connect them. When used in agricultural irrigation, the singular form "pipe" is often used as a plural.[27]
Pipe is available in rigid joints, which come in various lengths depending on the material. Tubing, in particular copper, comes in rigid hard tempered joints or soft tempered (annealed) rolls. PeX and CPVC tubing also comes in rigid joints or flexible rolls. The temper of the copper, whether it is a rigid joint or flexible roll, does not affect the sizing.[27]
The thicknesses of the water pipe and tube walls can vary. Because piping and tubing are commodities, having a greater wall thickness implies higher initial cost. Thicker walled pipe generally implies greater durability and higher pressure tolerances. Pipe wall thickness is denoted by various schedules or for large bore polyethylene pipe in the UK by the Standard Dimension Ratio (SDR), defined as the ratio of the pipe diameter to its wall thickness. Pipe wall thickness increases with schedule, and is available in schedules 20, 40, 80, and higher in special cases. The schedule is largely determined by the operating pressure of the system, with higher pressures commanding greater thickness. Copper tubing is available in four wall thicknesses: type DWV (thinnest wall; only allowed as drain pipe per UPC), type 'M' (thin; typically only allowed as drain pipe by IPC code), type 'L' (thicker, standard duty for water lines and water service), and type 'K' (thickest, typically used underground between the main and the meter).
Wall thickness does not affect pipe or tubing size.[28] 1/2" L copper has the same outer diameter as 1/2" K or M copper. The same applies to pipe schedules. As a result, a slight increase in pressure losses is realized due to a decrease in flowpath as wall thickness is increased. In other words, 1 foot of 1/2" L copper has slightly less volume than 1 foot of 1/2 M copper.[29]
Water systems of ancient times relied on gravity for the supply of water, using pipes or channels usually made of clay, lead, bamboo, wood, or stone. Hollowed wooden logs wrapped in steel banding were used for plumbing pipes, particularly water mains. Logs were used for water distribution in England close to 500 years ago. US cities began using hollowed logs in the late 1700s through the 1800s. Today, most plumbing supply pipe is made out of steel, copper, and plastic; most waste (also known as "soil")[30] out of steel, copper, plastic, and cast iron.[30]
The straight sections of plumbing systems are called "pipes" or "tubes". A pipe is typically formed via casting or welding, whereas a tube is made through extrusion. Pipe normally has thicker walls and may be threaded or welded, while tubing is thinner-walled and requires special joining techniques such as brazing, compression fitting, crimping, or for plastics, solvent welding. These joining techniques are discussed in more detail in the piping and plumbing fittings article.
Galvanized steel potable water supply and distribution pipes are commonly found with nominal pipe sizes from 3⁄8 inch (9.5 mm) to 2 inches (51 mm). It is rarely used today for new construction residential plumbing. Steel pipe has National Pipe Thread (NPT) standard tapered male threads, which connect with female tapered threads on elbows, tees, couplers, valves, and other fittings. Galvanized steel (often known simply as "galv" or "iron" in the plumbing trade) is relatively expensive, and difficult to work with due to weight and requirement of a pipe threader. It remains in common use for repair of existing "galv" systems and to satisfy building code non-combustibility requirements typically found in hotels, apartment buildings and other commercial applications. It is also extremely durable and resistant to mechanical abuse. Black lacquered steel pipe is the most widely used pipe material for fire sprinklers and natural gas.
Most typical single family home systems will not require supply piping larger than
3⁄4 inch (19 mm) due to expense as well as steel piping's tendency to become obstructed from internal rusting and mineral deposits forming on the inside of the pipe over time once the internal galvanizing zinc coating has degraded. In potable water distribution service, galvanized steel pipe has a service life of about 30 to 50 years, although it is not uncommon for it to be less in geographic areas with corrosive water contaminants.
Copper pipe and tubing was widely used for domestic water systems in the latter half of the twentieth century. Demand for copper products has fallen due to the dramatic increase in the price of copper, resulting in increased demand for alternative products including PEX and stainless steel.
Plastic pipe is in wide use for domestic water supply and drain-waste-vent (DWV) pipe. Principal types include: Polyvinyl chloride (PVC) was produced experimentally in the 19th century but did not become practical to manufacture until 1926, when Waldo Semon of BF Goodrich Co. developed a method to plasticize PVC, making it easier to process. PVC pipe began to be manufactured in the 1940s and was in wide use for Drain-Waste-Vent piping during the reconstruction of Germany and Japan following WWII. In the 1950s, plastics manufacturers in Western Europe and Japan began producing acrylonitrile butadiene styrene (ABS) pipe. The method for producing cross-linked polyethylene (PEX) was also developed in the 1950s. Plastic supply pipes have become increasingly common, with a variety of materials and fittings employed.
Present-day water-supply systems use a network of high-pressure pumps, and pipes in buildings are now made of copper,[34] brass, plastic (particularly cross-linked polyethylene called PEX, which is estimated to be used in 60% of single-family homes[35]), or other nontoxic material. Due to its toxicity, most cities moved away from lead water-supply piping by the 1920s in the United States,[36] although lead pipes were approved by national plumbing codes into the 1980s,[37] and lead was used in plumbing solder for drinking water until it was banned in 1986.[36] Drain and vent lines are made of plastic, steel, cast iron, or lead.[38][39]
In addition to lengths of pipe or tubing, pipe fittings such as valves, elbows, tees, and unions. are used in plumbing systems.[40] Pipe and fittings are held in place with pipe hangers and strapping.
Plumbing fixtures are exchangeable devices that use water and can be connected to a building's plumbing system. They are considered to be "fixtures", in that they are semi-permanent parts of buildings, not usually owned or maintained separately. Plumbing fixtures are seen by and designed for the end-users. Some examples of fixtures include water closets[41] (also known as toilets), urinals, bidets, showers, bathtubs, utility and kitchen sinks, drinking fountains, ice makers, humidifiers, air washers, fountains, and eye wash stations.
Threaded pipe joints are sealed with thread seal tape or pipe dope. Many plumbing fixtures are sealed to their mounting surfaces with plumber's putty.[42]
Plumbing equipment includes devices often behind walls or in utility spaces which are not seen by the general public. It includes water meters, pumps, expansion tanks, back flow preventers, water filters, UV sterilization lights, water softeners, water heaters, heat exchangers, gauges, and control systems.
There are many tools a plumber needs to do a good plumbing job. While many simple plumbing tasks can be completed with a few common hand held tools, other more complex jobs require specialised tools, designed specifically to make the job easier.
Specialized plumbing tools include pipe wrenches, flaring pliers, pipe vise, pipe bending machine, pipe cutter, dies, and joining tools such as soldering torches and crimp tools. New tools have been developed to help plumbers fix problems more efficiently. For example, plumbers use video cameras for inspections of hidden leaks or other problems; they also use hydro jets, and high pressure hydraulic pumps connected to steel cables for trench-less sewer line replacement.
Flooding from excessive rain or clogged sewers may require specialized equipment, such as a heavy duty pumper truck designed to vacuum raw sewage.[citation needed]
Bacteria have been shown to live in "premises plumbing systems". The latter refers to the "pipes and fixtures within a building that transport water to taps after it is delivered by the utility".[43] Community water systems have been known for centuries to spread waterborne diseases like typhoid and cholera. However, "opportunistic premises plumbing pathogens" have been recognized only more recently: Legionella pneumophila, discovered in 1976, Mycobacterium avium, and Pseudomonas aeruginosa are the most commonly tracked bacteria, which people with depressed immunity can inhale or ingest and may become infected with.[44] Some of the locations where these opportunistic pathogens can grow include faucets, shower heads, water heaters and along pipe walls. Reasons that favor their growth are "high surface-to-volume ratio, intermittent stagnation, low disinfectant residual, and warming cycles". A high surface-to-volume ratio, i.e. a relatively large surface area allows the bacteria to form a biofilm, which protects them from disinfection.[44]
Much of the plumbing work in populated areas is regulated by government or quasi-government agencies due to the direct impact on the public's health, safety, and welfare. Plumbing installation and repair work on residences and other buildings generally must be done according to plumbing and building codes to protect the inhabitants of the buildings and to ensure safe, quality construction to future buyers. If permits are required for work, plumbing contractors typically secure them from the authorities on behalf of home or building owners.[citation needed]
In Australia, the national governing body for plumbing regulation is the Australian Building Codes Board. They are responsible for the creation of the National Construction Code (NCC), Volume 3 of which, the Plumbing Regulations 2008[45] and the Plumbing Code of Australia,[46] pertains to plumbing.
Each Government at the state level has their own Authority and regulations in place for licensing plumbers. They are also responsible for the interpretation, administration and enforcement of the regulations outlined in the NCC.[47] These Authorities are usually established for the sole purpose of regulating plumbing activities in their respective states/territories. However, several state level regulation acts are quite outdated, with some still operating on local policies introduced more than a decade ago. This has led to an increase in plumbing regulatory issues not covered under current policy, and as such, many policies are currently being updated to cover these more modern issues. The updates include changed to the minimum experience and training requirements for licensing, additional work standards for new and more specific kinds of plumbing, as well as adopting the Plumbing Code of Australia into state regulations in an effort to standardise plumbing regulations across the country.
In Norway, new domestic plumbing installed since 1997 has had to satisfy the requirement that it should be easily accessible for replacement after installation.[48] This has led to the development of the pipe-in-pipe system as a de facto requirement for domestic plumbing.
In the United Kingdom the professional body is the Chartered Institute of Plumbing and Heating Engineering (educational charity status) and it is true that the trade still remains virtually ungoverned;[49] there are no systems in place to monitor or control the activities of unqualified plumbers or those home owners who choose to undertake installation and maintenance works themselves, despite the health and safety issues which arise from such works when they are undertaken incorrectly; see Health Aspects of Plumbing (HAP) published jointly by the World Health Organization (WHO) and the World Plumbing Council (WPC).[50][51] WPC has subsequently appointed a representative to the World Health Organization to take forward various projects related to Health Aspects of Plumbing.[52]
In the United States, plumbing codes and licensing are generally controlled by state and local governments. At the national level, the Environmental Protection Agency has set guidelines about what constitutes lead-free plumbing fittings and pipes, in order to comply with the Safe Drinking Water Act.[53]
Some widely used Standards in the United States are:[citation needed]
In Canada, plumbing is a regulated trade requiring specific technical training and certification. Standards and regulations for plumbing are overseen at the provincial and territorial level, each having its distinct governing body:
cite journal
|journal=
[[Category:Bathrooms]
I live in San Mateo city and I was about to put my house on the market to find out that the city of San Mateo requires now sewer lateral inspection done by licensed Plumber. So I called the first company that popped out on Google. They came and did the sewer lateral inspection in the inspection, they found out that I have roots drawing in my sewer lateral from the house line right before the city connection. The same company gave me estimate to repair the issue, but the cost was very high. I called two other plumbers and one of them was J&k plumbing service they came out did the camera inspection for free and gave me the best deal and solution for my situation which was a sewer spot repair that cost me a fraction from what the other companies quoted me
Impressed with the service—our tankless water heater had an issue, and the technician knew exactly how to fix it. Fast and professional work!
Couldn’t be happier with the service! They were fast, friendly, and extremely skilled. Will definitely use them again.
This team is the one to call! They responded quickly, diagnosed the issue efficiently, and handled the repair with precision. Their professionalism and attention to detail gave us total peace of mind. We’re beyond satisfied and will definitely use their services again!